翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Radon–Nikodym property : ウィキペディア英語版
Bochner integral
In mathematics, the Bochner integral, named for Salomon Bochner, extends the definition of Lebesgue integral to functions that take values in a Banach space, as the limit of integrals of simple functions.
==Definition==

Let (''X'', Σ, μ) be a measure space and ''B'' a Banach space. The Bochner integral is defined in much the same way as the Lebesgue integral. First, a simple function is any finite sum of the form
:s(x) = \sum_^n \chi_(x) b_i
where the ''E''''i'' are disjoint members of the σ-algebra Σ, the ''b''''i'' are distinct elements of ''B'', and χE is the characteristic function of ''E''. If ''μ''(''E''''i'') is finite whenever ''b''''i'' ≠ 0, then the simple function is integrable, and the integral is then defined by
:\int_X \left(\chi_(x) b_i\right )\, d\mu = \sum_^n \mu(E_i) b_i
exactly as it is for the ordinary Lebesgue integral.
A measurable function ƒ : ''X'' → ''B'' is Bochner integrable if there exists a sequence of integrable simple functions ''s''''n'' such that
:\lim_\int_X \|f-s_n\|_B\,d\mu = 0,
where the integral on the left-hand side is an ordinary Lebesgue integral.
In this case, the Bochner integral is defined by
:\int_X f\, d\mu = \lim_\int_X s_n\, d\mu.
It can be shown that a function is Bochner integrable if and only if it lies in the Bochner space L^1.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Bochner integral」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.